On pancyclic digraphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizations of vertex pancyclic and pancyclic ordinary complete multipartite digraphs

A digraph obtained by replacing each edge of a complete multipartite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a complete multipartite digraph. Such a digraph D is called ordinary if for any pair X, Y of its partite sets the set of arcs with end vertices in X ∪ Y coincides with X × Y = {x, y) : x ∈ X, y ∈ Y } or Y ×X or X×Y ∪Y ×X. We characterize a...

متن کامل

On pancyclic representable matroids

Bondy proved that an n-vertex simple Hamiltonian graph with at least n2/4 edges has cycles of every length unless it is isomorphic to Kn/2,n/2. This paper considers finding circuits of every size in GF (q)-representable matroids with large numbers of elements. A consequence of the main result is that a rank-r simple binary matroid with at least 2r−1 elements has circuits of all sizes or is isom...

متن کامل

Strongly pancyclic and dual-pancyclic graphs

Say that a cycle C almost contains a cycle C− if every edge except one of C− is an edge of C. Call a graph G strongly pancyclic if every nontriangular cycle C almost contains another cycle C− and every nonspanning cycle C is almost contained in another cycle C. This is equivalent to requiring, in addition, that the sizes of C− and C differ by one from the size of C. Strongly pancyclic graphs ar...

متن کامل

On k-path pancyclic graphs

For integers k and n with 2 ≤ k ≤ n− 1, a graph G of order n is k-path pancyclic if every path P of order k in G lies on a cycle of every length from k + 1 to n. Thus a 2-path pancyclic graph is edge-pancyclic. In this paper, we present sufficient conditions for graphs to be k-path pancyclic. For a graph G of order n ≥ 3, we establish sharp lower bounds in terms of n and k for (a) the minimum d...

متن کامل

Locally Pancyclic Graphs

We prove the following theorem. Let G be a graph of order n and let W V(G). If |W | 3 and dG(x)+dG( y) n for every pair of non-adjacent vertices x, y # W, then either G contains cycles C , C, ..., C |W | such that C i contains exactly i vertices from W (i=3, 4, ..., |W | ), or |W |=n and G=Kn 2, n 2 , or else |W |=4, G[W]=K2, 2 . This generalizes a result of J. A. Bondy (1971, J. Combin. Theory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 1976

ISSN: 0095-8956

DOI: 10.1016/0095-8956(76)90063-0